Принцип работы холодильника

Работа холодильника основывается на способности фреона менять агрегатное состояние, отдавая и забирая при этом тепло. В 30-х годах 20-го века открыли фреоны, которые были очень эффективны и при этом относительно безопасны. Холодильная техника тогда получила новый толчок для развития.

Холодильный агрегат работает так.

shema-bytovogo-holodilnika

Мотор-компрессор  1 (компрессор со встроенным электродвигателем)   всасывает пары фреона из испарителя 5 и нагнетает их в конденсатор 2.  В конденсаторе пары фреона охлаждаются за счёт теплообмена с окружающим воздухом через стенки труб и конденсируются. Газообразный фреон меняет свое агрегатное состояние на жидкое при сохранении достигнутого компрессором высокого давления.  Это давление называется давлением конденсации.

Далее жидкий фреон через фильтр-осушитель 3 и капиллярную трубку 4 попадает в испаритель 5. Гидравлическое сопротивление капиллярной трубки (определяемое её внутренним диаметром и длиной) подбирается таким образом, чтобы создать определенную разность давления всасывания и конденсации, которое создает компрессор, при которой через трубопровод проходило определенное количество жидкости. До входа фреона в испаритель, давление падает от давления конденсации до давления кипения. Этот процесс называется дросселированием. В трубках или каналах испарителя происходит кипение фреона. Этот процесс происходит с поглощением тепла, которое отбирается от воздуха в холодильнике через поверхность испарителя. Таким образом, воздух при контакте с наружной поверхностью испарителя охлаждается. Проходя через испаритель, жидкий фреон нагреваясь превращается в пар, который откачивается компрессором. Отношение количества теплоты, отводимой  холодильной машиной, к затраченной электрической энергии называется холодильным коэффициентом.

Этот коэффициент  характеризует степень совершенства холодильника при определенной температуре кипения.
Мотор-компрессор — является главной частью, вокруг которой строится вся работа холодильного агрегата. Назначение компрессора состоит в обеспечении циркуляции охлаждающего вещества (фреона) по системе трубопроводов холодильного агрегата. Холодильник может быть укомплектован как одним, так и двумя компрессорами, работающими на разных температурных уровнях.

Конденсатор — теплообменный аппарат для отвода тепла от конденсирующихся (превращающихся в жидкость) паров фреона к окружающей среде. Отвод тепла конденсации становится возможным ввиду повышения температуры в процессе сжатия. На холодильниках с естественным охлаждением конденсатор в виде змеевика или щита устанавливают на задней стенке (снаружи или внутри). Холодильники больших размеров обычно оснащены конденсаторами, имеющими вид радиаторов, их устанавливают рядом с компрессором, внизу. Вентилятор обеспечивает их обдув для эффективного охлаждения. Конденсатор обязательно должен хорошо охлаждаться – это залог нормальной работы холодильника.

Испаритель – теплообменный аппарат, в котором внутри кипит жидкий фреон, а снаружи происходит охлаждение требуемой среды (воздуха или непосредственно продукта). Кипение в испарителе  происходит при низкой температуре и соответствующем давлении и идёт за счет теплоты, отнимаемой от охлаждаемой среды.

Капиллярная трубка – предназначена для дросселирования перед испарителем жидкого фреона и снижения его давления от давления конденсации до давления кипения с соответствующим понижением давления. Представляет собой медный трубопровод длиной 1,5…3,0 м с внутренним диаметром 0,6…0,85 мм. Устанавливается между конденсатором и испарителем.

Фильтр-осушитель  —  устанавливается перед входом в капиллярную трубку для предохранения ее от засорения механическими частицами, для поглощения влаги из фреона и предотвращения замерзания этой влаги на выходе из капиллярной трубки. Корпус патрона фильтра состоит из медной трубки длиной 105…140 мм и диаметром 18…12 мм. В корпус фильтра помещают цеолит между сетками, установленными на входе и выходе  из патрона. Цеолит (молекулярное сито) служит для поглощения молекул влаги из фреона.

Работу  бытового холодильника обеспечивает электрическая схема, представленная ниже.

elektroshema-holodilnika

1 — терморегулятор, 2 — кнопка принудительной оттайки, 3 — реле тепловой защиты (3.1. — контакты реле, 3.2. — биметаллическая пластина), 4 — электродвигатель мотор-компрессора (4.1. — рабочая обмотка, 4.2. — пусковая обмотка), 5 — пусковое реле (5.1. — контакты реле, 5.2. — катушка реле).

При подаче напряжения в схему электрический ток проходит: через замкнутые контакты терморегулятора 1, копки принудительной оттайки 2, реле тепловой защиты 3, (контакт 3.1, биметаллическая пластина 3.2), пусковое реле 5 (катушку 5.2, контакты 5.1 разомкнуты) и рабочую обмотку 4.1 электродвигателя мотор-компрессора 4. Поскольку на момент пуска вал двигателя не вращается, ток, протекающий через рабочую обмотку, в несколько раз превышает номинальный. Пусковое реле 5 устроено таким образом, что при превышении номинального значения тока замыкаются контакты 5.1, подключая к цепи пусковую обмотку электродвигателя, который способствует началу движения вала. После осуществления пуска ток в рабочей обмотке снижается, контакты пускового реле размыкаются, но двигатель продолжает работать в нормальном режиме за счет рабочей обмотки.

При достижении заданной температуры, контакты терморегулятора размыкаются и электродвигатель компрессора останавливается.

Для отключения электродвигателя при опасном повышении силы тока предназначено реле тепловой защиты. Оно защищает электродвигатель от перегрева и сгорания. Реле состоит из биметаллическое пластины 3.2., которая при опасном повышении силы тока нагревается и, изгибаясь, размыкает контакты 3.1. После  остывания биметаллической пластины контакты снова замыкаются.

Яндекс.Метрика